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Introduction
Tissue scaffold are the synthetic bioresorbable polymers that are 

functional substitutes to replace missing or malfunctioning human 
tissues and organ, to provide a temporary substrate to which the 
transplanted cells can adhere is the primary role of a scaffold.

The important factors to be considered with respect to nutrient 
supply to transplanted and regenerated cells are porosity, pore size and 
pore structure for porous scaffolds with a large surface-area-to volume 
ratio and a large void volume are desirable for attachment, growth, 
maximal cell seeding, ECM production, and vascularization. Pores in 
scaffolds of same diameter are preferable to yield high surface area per 
volume provided the pore size is greater then the diameter of a cell in 
suspension [1].

Experiments have demonstrated optimal pore size of 20 µm 
for adult mammalian skin regeneration, and 200-400µm for bone 
in growth [2,3]. The rate of tissue invasion into porous scaffolds 
also depends on the pore size and polymer crystallinity [4-6]. For 
the architect and fabrication of tissue scaffolds of exact pore size & 
porosity as that is required for the growth of tissue cell in scaffold were 
obtained with the help of computer aided design & computer aided 
manufacturing (CAD & CAM) and finite element method (FEM). The 
utilization of computer-aided technologies in tissue engineering has 
evolved in the development of a new emerging field of computer-aided 
tissue engineering (CATE). CATE comprises of computer imaging 
technology, CAD/CAM and modern design and manufacturing 
technology. The classification of CATE is done in three major categories 
(1) computer-aided tissue anatomical modeling; (2) computer-aided
tissue classification; and (3) computer-aided tissue implantation [7].

On the other hand if the mechanical properties of material of tissue 
scaffolds are known then with the help of Finite Element Modeling 
(FEM) we are able to predict the behavior of complex structures, such 
as multilayer system [8-14]. When tissue scaffold is in vivo condition 

then there will be some microscopic loads(compressive loads and fluid 
flow) as the tissue differentiation proceeds, it is difficult to determine 
the local mechanical stimuli sensed by the cells at a microscopic level, 
for the study of stress strain relationship at microscopic level Finite 
Element Analysis is used. Finite element analysis (FEA) and Computer 
Aided Design (CAD) combines with manufacturing technologies such 
as Solid Freeform Fabrication (SFF) helpful to allow virtual design, 
characterization and production of scaffold optimized for tissue 
replacement, make possible to design and manufacture very complex 
tissue scaffold structure with functional components that are difficult 
to fabricate. This paper presents a review on the recent development in 
CAD/CAM & FEM for the fabrication of porous scaffolds and how the 
porosity can be effectively represented and modeled.

Scaffold modeling through computed tomographic images

Computer Tomographic (CT) Images and Magnetic resonance 
Images (MRI) are used for the generation of 2 D anatomical view of 
sample and with the help of that series of 2-D images 3-D anatomical 
view of an object will be created and which can be used for SFF. The 
anatomical model of human tissue is generated with the help of non-
invasive imaging technique, such as CT or MRI technology. Each CT 
image actually computed of tiny picture element (pixels) which turns 
in to a small volume element (voxel) of patient tissue sampled by the 
CT scanner [15].
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Abstract
Tissue engineering the development of functional substitute to replace missing or malfunctioning human 

tissue and organs by using biodegradable biomaterials as scaffolds to direct specific cell types to organize into 
three dimensional structures and perform differentiated function of targeted tissue. The important factors to be 
considered in designing of microstructure were porosity, pore size, and pore structure with respect to nutrient supply 
for transplanted and regenerated cells. Performance of various functions of the tissue structure depends on porous 
scaffold microstructures with specific porosity, pore size, characteristics that influence the behavior of the incorporated 
cells. Finite element Methods (FEM) and Computer Aided Design (CAD) combines with manufacturing technologies 
such as Solid Freeform Fabrication (SFF) helpful to allow virtual design, characterization and production of porous 
scaffold optimized for tissue replacement with appropriate pore size. Finite Element Modeling used to calculate the 
stress areas in a complex scaffold structures and thus predict their mechanical behavior during in vivo environment 
(eg. As load bearing in bone tissue scaffolds) is evaluated. This article reviews recent development and application 
of Finite Element Methods (FEM) and Computer Aided Design and computer-aided manufacturing (CAD & CAM), 
and rapid prototyping (RP) technology in the development of porous tissue scaffolds.
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CT images is not ethically justified because of dose of radiation 
administrated on the other hand MRI is consider to be better than CT 
images as its ability to show subtle differences in soft tissue anatomy 
without the harmful effects of ionizing radiation present in CT. Table 
1 give a comparison of imaging characteristic commonly used in 
production of 3-D reconstruction CT and MRI [15], the use of non-
destructive characterization techniques such as micro-computed 
tomography (micro CT) is used for the three-dimensional scaffolds 
with an internal pore structure[16]. Micro CT is a more recent non-
destructive method of examining the characteristics of scaffolds [17] 
as well as in the modeling and fabrication of scaffolds. In vivo micro 
CT scanning has been shown to be both repeatable and reproducible 
[18]. Micro CT is a useful tool both for studying the location and extent 
of growth into a polymeric scaffold, and for determining whether the 
regenerated tissue has blood supply [19].

Three-Dimensional reconstruction techniques help in the development 
of 3-D anatomical model or images and allow the third dimension to be 
studied directly by displaying of 3-D anatomical image [7]. Although 
voxel based anatomical representation through CT/MRI images cannot 
be effectively used in many biomechanical engineering activities 
such as anatomical structural design, modeling-based anatomical 
design modeling-based anatomical tissue biomechanical analysis and 
simulation [20-22]. CAD system and CAD- based solid modeling 
which is based on vector modeling environment is used for anatomical 
modeling design, analysis and simulation. 

CAD in tissue engineering

CAD system use the ‘Boundary Representation’ (B-REP) in which 
a solid object is defined by the surface which bound to it and thes 
surfaces are describes with the help of non-uniform rational B-spline 
(NURBS) functions [23-25]. CAD contributes to the shortening the 
design process of scaffolds and also contributes to the minimizing of 
experimental tests [26,7]. Since 2000, chemical based techniques for 
fabrication of scaffolds made way to alternate methods of fabrication 
that had the capability to be integrated with CAD/CAM technologies 
[27-29]. This made it possible for the scaffolds to be designed using CAD 
software and then transferred for rapid protyping for its fabrication. To 
bridge the gap between medical imaging and CAD design software a 
standard module Med CAD is used. Med CAD interface can export 
the data from the CT/MRI system to CAD platform and vice versa 
through either IGES (International Graphics Exchange Standard), 
STEPS (Standard for Exchange of Product) or STL format. Med CAD 
interface is software of imaging. It is helpful in exporting the data 
from the imaging system to CAD and also from IGES (International 
Graphics Exchange Standard), STEP (Standard for Exchange of 
Product) or STL format. The interface of Med CAD provides for the 
fitting of primitives such as cylinder, spheres, planes etc. at the Imaging 
2-D segmentation slices and also provides the limited ability to model 
B-Spline surfaces. B-splines are known to represent the freeform 
objects closely. The B-spline tensor product modeling methodology is 
presented in this paper to model both geometry and material variation 

of human body slice from CT scan image. As B-splines are known to 
represent the freeform objects closely, it is proposed to represent both, 
the geometry and the density with B-splines [30]. The limitation of Med 
CAD interface is the incapability to capture details and complex tissue 
anatomical features, particularly for features with complex geometry 
[26] Figure 1.

W. Sun et al. [26] had evaluated and compared following three 
different process paths for generating a CAD model from medical 
imaging data: (1) MedCAD interface approach, (2) reverse engineering 
interface approach, and (3) STL triangulated model converting 
approach. The outline of the processes is presented in Figure 2.

The micro-architecture of tissue scaffold is believed to influence 
the biological function of tissues and behavior of cells by providing 
spatial distribution for cell growth and providing a nutritional pathway 
and proliferation to cells. The problem in the fabrication of scaffolds 
are often limited in practicle thickness due in part, to the difficulty in 
getting cells deep into interior regions of scaffold then this problem is 
eliminated with the help of adopting an advance technology for the 
synthesis of scaffolds such as Solid Free Form Fabrication(SFF) [31-34]. 
As the advancement takes place in the SFF it become the most favorable 
approach in the fabrication of scaffold, the interior architecture of these 
scaffolds were either designed as a pattern of extrusions, cuts and holes 
across the surface of the tissue scaffolds in a CAD platform. 

CAD for Porous tissue scaffolds

In scaffold the porosity and pore size will play a critical role in 
tissue and cell formation in vitro and in vivo. The density and structure 
of many manufactured components could be designed to achieve 
optimum performance if the local porosity of formed material could be 
controlled [35]. Studies had shown that both mechanical and biological 
properties of porous scaffolds, cell growth and migration processes are 
determined in part by the local micro architecture of tissue scaffolds. 
For example, specific pore size and overall porosity of the scaffold are 
favorable to specific cells which affect their cellular adhesion, ingrowth, 
distribution, viability, and the formation of an extra cellular matrix 
[36,37]. Image based design (IBD) method is develop previously 
for the external scaffold shape and global porous architecture [38]. 
The internal architectures of porous tissue scaffolds determine the 
mechanical properties of the scaffolds and control degree of tissue 
regeneration [39-41].

To build designer tissue-engineering scaffolds Scott j Hollister 
[42] reviewed the integration of of computational topology design 
(CTD) with the solid free-form fabrication. Pallavi Lal and Wei Sun 
[43] proposed a computer modeling approach for constructing 
3-dimensional microsphere-packed bone graft structure which consist 
two extreme microsphere-packing models(minimum & maximum 
density packing). Chua CK et al. [44,45] for tissue engineering proposed 
a novel modeling approach. Various polyhedral shapes as a unit cell 
for bone scaffold modeling are selected. In the tissue engineering 
bone scaffold modeling to assists the users in the application of CAD 
modeling, a standard parametric library of scaffold structure were 
designed and developed from which a user could select cell unit 
and size as suit to it. A library of CAD based unit cell of scaffolds is 
generated derived from different feature primitive patterns is presented 
in Figure 3 [26]. As an open polyhedral cell unit was finalized and 
sized then an automatic algorithm for generating complex polyhedral 
scaffolds [46] was employed to assemble the micro architecture of the 
scaffold. Craig Schroeder and Wei Sun [47] noticed the differences 
between the bone scaffolds fabricated by rapid prototyping technology 

Characteristics CT MRI
Matrix size(Pixel) 512×512 256×256
Voxel size(mm) 0.5×0.5×2.0 0.5×0.5×1.5 (gap)

Density resolution 4096 levels (12 bit) 128 levels (16 bit)
Signal to noise ratio High Moderate

Segmentation Threshold Complex
Porotocol Simple (radiation) Complex (benign)

Table 1: Characteristics comparison of CT and MRI.
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information and generate a virtual scaffold prototyping. Wettergreen 
MA et al. [49] created a library of unit cell of the tissue scaffold 
architectures that could be beneficial to collection a complex tissue 
scaffold of individual, well characterized microstructure. Shengyon 
Cai and Juntong Xi [50] has given a control modeling approach for 
constructing tissue engineering bone scaffold with defined pore size 
distribution based on the hexahedral mesh refinement which enjoyed 
easy controllability and higher accuracy in comparison to other methods 
such as varying processing parameter in supercritical fluid processing 
and multi-interior architecture design. Ravi M et al. [51] presented two 
different types of modeling methods which is capable of representing 
both the soft and the hard tissue, namely B-spline heterogeneous 
fairing and B-spline heterogeneous fit. These two approaches will give 
the use modeling flexibility when used with different proportion of CT 
data Figure 3. 

Finite Element Methods in Tissue Engineering
As the development of the tissue will takes place in scaffolds then 

there is an increase of cell differentiation and extracellular matrix 
synthesis will takes which will cause the increase in compressive load, 
and fluid flow with high velocity which is associated with cell apoptosis 
and finally when they are combined with each other then they will 
show to increase the extracellular matrix synthesis. It is very clear that 
there is a direct relationship between the tissue differentiation and 
macroscopic mechanical loads (compressive loads & fluid flow). Now 
it will become a difficult task to determine the local mechanical stimuli 
which is sensed by the cell at microscopic level then strain and stress 
distribution on a scaffolds at microscopic level can be studied by using 
Finite Element Method (FEM) which is helpful in development and 
fabrication of scaffold of exact mechanical strength that is required 
in the development phase of tissue in scaffolds. If the mechanical 
properties of the materials comprising the structure are known then 
FEM has shown to be capable of predicting the behavior of complex 
structures such as multilayer system [52-55].

Miranda P et al. [56] used Finite Element Method(FEM) as a tool to 
calculate the stress fields in complex tissue scaffold structures and thus 
predict their mechanical behavior during their service(eg as load bearing 
bone implants) is evaluated. This method is applied for identifying 
the facture modes and estimating the strength of robocast tissue 
scaffold. The calculation is performed for three testing configuration: 
Compression, Tension, and Shear. The tools applied for FEM are 
ANSYS, MSC Nastran and MSC Patran etc. Finite element Modeling 
Fang Z et al. [57] done the computer aided characterization approach 
to evaluate the effective mechanical properties of porous scaffold. The 
computational algorithm that is applied in characterization is finite 
element implementation of asymptotic homogenization theory. The 
characterization results of PCL shows that its effective mechanical 
properties are the function of scaffolding materials and overall porosity 
of scaffold structure. Lacroix et al. [58] did finite element analysis 
of cylinders of CaP-based scaffolds to calculate the stress-strain 
distribution throughout larger scaffolds.

To calculate the mechanical properties of microstructure multiscale 
fine element models using the homogenization theory have been used 
[59]. Andy L. Olivares et al. [60] modeled the gyroid and hexagonal 
scaffold of 55% and 77% porosity in a finite element analysis and were 
submitted to an inlet fluid flow or compressive strain and results shows 
that gyroid architecture provides a better accessibility of the fluid then 
the hexagonal structure. This shows that the distribution of the shear 
stress induced by fluid perfusion is very dependent on pore distribution 

(a) Polylines contours used to
  dem arcate boundary regions

(b) Polylines  were grown through
          the segmented images

(c) B - spline surfaces and 
  primitives (sphere) used

Figure 1: CAD model construction using MedCAD interface [26].
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STL interface- Triangular
Faceted model

Fit a B-spline surface on
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CAD  model

IGES format

Point dat

Triangulated Base model

Figure 2: Process definition to arrive at a CAD model from CT/MRI data [26].

Figure 3: A library of designed scaffold unit cells based on different feature 
primitives. Adapted from W Sun et al. [26].

and natural structures from SEM (Scanning Electron Microscope) 
images by generating a stochastic model for a Berea sandstone and a 
Fontainebleau sandstone, with each a prescribed lineal-path function, 
two-point probability function and “pore-size” distribution function. 
The pore distribution and pore size were controlled based on the 
stochastic geometry theory and minimum distance between pores. 

Jie Li and Wei Sun [48] use a swept volume representation methods 
for the fabrication of tissue scaffolds which described the tool path 
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with in the scaffolds. Zaoyang Guo et al. [61] proposed a FEM-based 
direct method material reconstruction inverse problem in soft tissue 
elastography. The results can be obtained by minimizing he objective 
function, defined as the sum of the square of the residual norms at all 
nodes where the nodal residual norm of the associated elements is 
defined as a linear function of elasticity parameters. By satisfying the 
equilibrium at every node is utilized as the optimization objective and 
the measured deformation is enforced directly as a result, the soft tissue 
elastography can be obtained directly by solving the resulting set of 
linear equations and no iterations are required.

Sandino C et al. [62] uses micro computed tomographed (CT)-
based finite element (FE) models of the real shape of the solid material 
phase and the pores provides detailed information about mechanical 
stimuli caused by mechanical loading on the extracellular matrix 
and interstitial fluid flow within the internal walls of two biomaterial 
scaffolds with different morphologies.Two samples of porous materials, 
one of calcium phosphate-based cement and another of biodegradable 
glass, were used. Elbert Baas et al. [63] shows that by using linear micro-
finite element (µFE) technique based on micro-computed tomography 
(µCT) the local displacements at a microscopic level in sizable polymer 
scaffolds can be calculated.

Conclusion
From the above literature review computer aided tissue engineering 

and finite element methods combines with the rapid protyping 
technology helps in development of the exact microstructure of tissue 
scaffold as needed for the proper growth of tissue and organ. With 
the establishment CATE we can get more accurate and more realistic 
models that can simulate the biological process and the design of 
biomaterial scaffolds.
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