alexa [125I]-Galanin binding in brain of wildtype, and galanin- and GalR1-knockout mice: strain and species differences in GalR1 density and distribution.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Jungnickel SR, Gundlach AL

Abstract Share this page

Abstract Widespread production of knockout and transgenic mice has led to an increased use of mice as animal models for studies of normal- and patho-physiology. Hence, the precise mapping of central transmitter/peptide systems in the mouse has become essential for the interpretation of functional studies and for the correct correlation with findings obtained in the rat, primates and/or human. In this regard, the current study reports the autoradiographic localization of [(125)I]-galanin (GAL) binding sites in brain of the common C57BL/6J and 129OlaHsd mouse strains, as well as in GAL and galanin receptor-1 (GalR1) knockout (KO) mice. In C57BL/6J and 129OlaHsd mice, [(125)I]-GAL binding sites were detected throughout the brain, including moderate-high relative densities in the basal ganglia (caudate putamen, nucleus [n.] accumbens, olfactory tubercle, substantia nigra), limbic regions (septum, bed n. stria terminalis, ventral hippocampus, amygdala), cingulate, retrosplenial, entorhinal cortex, centro-lateral/medial thalamic n., preoptic/lateral hypothalamus, midbrain (superior colliculus, periaqueductal gray), pons/medulla oblongata (parabrachial, pontine reticular and solitary tract n.) and cerebellar cortex. [(125)I]-GAL binding levels were low or absent in main olfactory bulb, neocortex, ventrolateral/geniculate thalamic n., dorsal hippocampus, inferior colliculus and cranial motor n. In simultaneous determinations, relative [(125)I]-GAL binding site densities in brain were generally lower in C57BL/6J than in 129OlaHsd mice, while the density and distribution of central binding in the GAL-KO mouse was essentially identical to that in its background-129OlaHsd strain. In contrast, no specific [(125)I]-GAL binding was detected in any region of GalR1-KO mouse brain, revealing that under the experimental conditions used, the peptide ligand binding is predominantly (exclusively) to the GalR1 subtype. This evaluation of GAL receptor site distribution in mouse brain has revealed similarities and some differences with the equivalent system in rat and provides a valuable reference for future comparative studies of central GAL transmission. This article was published in Neuroscience and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords