alexa 17beta-estradiol, progesterone, and dihydrotestosterone suppress the growth of human melanoma by inhibiting interleukin-8 production.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Kanda N, Watanabe S

Abstract Share this page

Abstract We studied the effects of 17beta-estradiol, progesterone, and dihydrotestosterone on in vitro growth of human metastatic melanoma. Each sex hormone inhibited the growth of melanoma receptor-dependently; 17beta-estradiol inhibited 3H-thymidine uptake of estrogen receptor-positive WM266-4 and NM26, but not that of the receptor-negative HS15. Progesterone inhibited 3H-thymidine uptake of progesterone receptor-positive WM266-4 and HS15, but not that of the receptor-negative NM26. Dihydrotestosterone inhibited 3H-thymidine uptake of androgen receptor-positive HS15 and NM26, but not that of the receptor-negative WM266-4. The growth inhibition by each hormone was counteracted by the respective hormone receptor antagonist. The combination of more than two hormones neither gave additive nor synergistic growth inhibition. The growth inhibition by each sex hormone was counteracted by interleukin-8 but not by the other growth factors. Each sex hormone reduced the constitutive interleukin-8 secretion and mRNA levels in the respective receptor-positive melanoma but not in the receptor-negative melanoma. Transient transfection showed that each sex hormone inhibited the constitutive chloramphenicol acetyltransferase expression driven by interleukin-8 promoter in the respective receptor-positive melanoma but not in the receptor-negative melanoma. Transfection with a series of 5'-deleted interleukin-8 promoter/chloramphenicol acetyltransferase reporter constructs demonstrated that the sequences between -98 and -63 bp on interleukin-8 promoter may be involved in the transcriptional repression. These data suggest that 17beta-estradiol, progesterone, and dihydrotestosterone suppress the growth of melanoma by inhibiting interleukin-8 production in a receptor-dependent manner. This article was published in J Invest Dermatol and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords