alexa 18F-FLT PET CT for early response monitoring and dose escalation in oropharyngeal tumors.
Biochemistry

Biochemistry

Clinical & Medical Biochemistry

Author(s): Troost EG, Bussink J, Hoffmann AL, Boerman OC, Oyen WJ,

Abstract Share this page

Abstract Accelerated tumor cell proliferation is an important mechanism adversely affecting therapeutic outcome in head and neck cancer. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a PET tracer to noninvasively image tumor cell proliferation. The aims of this study were to monitor early tumor response based on repetitive (18)F-FLT PET/CT scans and to identify subvolumes with high proliferative activity eligible for dose escalation. METHODS: Ten patients with oropharyngeal tumors underwent an (18)F-FLT PET/CT scan before and twice during radiotherapy. The primary tumor and metastatic lymph nodes (gross tumor volume, or GTV) were delineated on CT (GTV(CT)) and after segmentation of the PET signal using the 50\% isocontour of the maximum signal intensity or an adaptive threshold based on the signal-to-background ratio (GTV(SBR)). GTVs were calculated, and similarity between GTV(CT) and GTV(SBR) was assessed. Within GTV(SBR), the maximum and mean standardized uptake value (SUV(max) and SUV(mean), respectively) was calculated. Within GTV(CT), tumor subvolumes with high proliferative activity based on the 80\% isocontour (GTV(80\%)) were identified for radiotherapy planning with dose escalation. RESULTS: The GTV(CT) decreased significantly in the fourth week but not in the initial phase of treatment. SUV(max) and SUV(mean) decreased significantly as early as 1 wk after therapy initiation and even further before the fourth week of treatment. For the primary tumor, the average (+/-SD) SUV(mean) of the GTV(SBR) was 4.7 +/- 1.6, 2.0 +/- 0.9, and 1.3 +/- 0.2 for the consecutive scans (P < 0.0001). The similarity between GTV(CT) and GTV(SBR) decreased during treatment, indicating an enlargement of GTV(SBR) outside GTV(CT) caused by the increasing difficulty of segmenting tracer uptake in the tumor from the background and by proliferative activity in the nearby tonsillar tissue. GTV(80\%) was successfully identified in all primary tumors and metastatic lymph nodes, and dose escalation based on the GTV(80\%) was demonstrated to be technically feasible. CONCLUSION: (18)F-FLT is a promising PET tracer for imaging tumor cell proliferation in head and neck carcinomas. Signal changes in (18)F-FLT PET precede volumetric tumor response and are therefore suitable for early response assessment. Definition of tumor subvolumes with high proliferative activity and dose escalation to these regions are technically feasible. This article was published in J Nucl Med and referenced in Clinical & Medical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords