alexa 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Manevich Y, Sweitzer T, Pak JH, Feinstein SI, Muzykantov V,

Abstract Share this page

Abstract 1-Cys peroxiredoxin (1-cysPrx) is a novel antioxidant enzyme able to reduce phospholipid hydroperoxides in vitro by using glutathione as a reductant. This enzyme is widely expressed and is enriched in lungs. A fusion protein of green fluorescent protein with 1-cysPrx was stably expressed in a lung-derived cell line (NCI-H441) lacking endogenous enzyme. Overexpressing cells (C17 or C48) degraded H(2)O(2) and t-butylhydroperoxide more rapidly and showed decreased sensitivity to oxidant stress as measured by (51)Cr release. On exposure to (*)OH generated by Cu(2+)-ascorbate (Asc), overexpressing cells compared with H441 showed less increase in thiobarbituric acid-reactive substance and phosphatidylcholine hydroperoxide content. This effect was reversed by depletion of cellular glutathione. Diphenyl-1-pyrenoylphosphonium fluorescence, used as a real-time probe of membrane phospholipid peroxidation, increased immediately on exposure to Cu(2+)-Asc and was abolished by preincubation of cells with Trolox (a soluble vitamin E) or Tempol (a radical scavenger). The rate of diphenyl-1-pyrenoylphosphonium fluorescence increase with Cu(2+)-Asc exposure was markedly attenuated in C17 and C48 cells as compared with H441. Annexin V-Cy3 was used to detect phosphatidylserine translocation from the inner to outer leaflet of the plasma membrane. Cu(2+)-Asc treatment induced phosphatidylserine translocation within 2 h in H441 cells but none was observed in C48 cells up to 24 h. These results indicate that 1-cysPrx can scavenge peroxides but in addition can reduce peroxidized membrane phospholipids. Thus, the enzyme can protect cells against oxidant-induced plasma membrane damage, thereby playing an important role in cellular defense against oxidant stress.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords