alexa 5-Nitro-4-(N,N-dimethylaminopropylamino)quinoline (5-nitraquine), a new DNA-affinic hypoxic cell radiosensitizer and bioreductive agent: comparison with nitracrine.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Wilson WR, Siim BG, Denny WA, van Zijl PL, Taylor ML,

Abstract Share this page

Abstract Targeting of electron-affinic radiosensitizers to DNA via noncovalent binding (e.g., intercalation) may offer the potential for increasing sensitizing efficiency. However, it has been suggested that high-affinity DNA binding may compromise sensitization by restricting the mobility of sensitizers along the DNA, and by decreasing rates of extravascular diffusion in tumors. The weak DNA intercalator nitracrine (1-NC) is a more efficient radiosensitizer than related nitroacridines with higher DNA-binding affinities (Roberts et al., Radiat. Res. 123, 153-164, 1990). The present study investigates whether electron-affinic agents of even lower DNA-binding affinity may be superior to nitroacridines. The quinoline analog of 1-NC, 5-nitraquine (5-NO), was shown to have an intrinsic association constant for calf thymus DNA in 20 mM phosphate buffer which was 12-fold lower than that of 1-NC. 5-Nitraquine was not accumulated as efficiently as 1-NC by AA8 cells, but, despite a similar one-electron reduction potential, was 2- to 3-fold more potent than 1-NC as a hypoxia-selective radiosensitizer in vitro when compared on the basis of average intracellular concentration. Thus the radiosensitizing potency of 5-NQ appears not to be compromised by its low DNA-binding affinity. The cytotoxic mechanisms of 5-NQ and 1-NC appear to be similar (hypoxia-selective formation of DNA monoadducts), but 5-NQ is 1200-fold less potent than 1-NC as a cytotoxin. Despite this advantage, 5-NQ was not active in vivo as a radiosensitizer in SCCVII tumors. This lack of activity appears to be due to its relatively high toxicity in vivo (intraperitoneal LD50 of 105 mumol kg-1 in C3H/HeN mice), high one-electron reduction potential (-286 mV), and rapid metabolism to the corresponding amine in mice. The in vitro therapeutic index (hypoxic radiosensitizing potency/aerobic cytotoxic potency) of this weak DNA binder was lower than that of the non-DNA targeted radiosensitizer misonidazole, suggesting that DNA targeting enhances cytotoxicity more than radiosensitization. Development of useful DNA-targeted radiosensitizers may require the exploitation of DNA binding modes different from those of the nitroacridines and nitroquinolines.
This article was published in Radiat Res and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords