alexa A Bacillus sphaericus Based Biosensor for Monitoring Nickel Ions in Industrial Effluents and Foods.


Journal of Biosensors & Bioelectronics

Author(s): Verma N, Singh M

Abstract Share this page

Abstract A microbial-based biosensor has been developed based on enzyme inhibition bioassay for monitoring the presence of Ni(II) in real-time samples. The sensing element is immobilized Bacillus sphaericus MTCC 5100 yielding urease enzyme. The transducer is an NH4+ ion selective electrode in conjunction with a potentiometer. Heavy metals are potentially toxic to human beings. Nickel is associated with causing adverse health effects such as dermatitis and vertigo, in humans. Toxicity is manifested by affecting T-cell system and suppressing the activity of natural killer cells. Nickel finds applications in electroplating, coinage, electrodes, jewellery, alloys. The foods rich in Ni(II) are nuts, beans, oats, and wheat. The range of Ni(II) detection by the developed biosensor is 0.03-0.68 nM (0.002-0.04 ppb) with a response time of 1.5 minutes. For application, the Ni(II) effluent was procured from an electroplating industrial unit and was found to have a concentration of 100.0 ppm Ni(II). In foods, wheat flour sample was acid digested and Ni(II) was specifically complexed in the presence of other cations, and had an Ni(II) concentration of 0.044 ppm. The developed system has a reliability of 91.5\% and 90.6\%, respectively, for the samples and could possibly replace the existing conventional techniques of analysis.
This article was published in J Autom Methods Manag Chem and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version