alexa A Bayesian compound stochastic process for modeling nonstationary and nonhomogeneous sequence evolution.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Blanquart S, Lartillot N

Abstract Share this page

Abstract Variations of nucleotidic composition affect phylogenetic inference conducted under stationary models of evolution. In particular, they may cause unrelated taxa sharing similar base composition to be grouped together in the resulting phylogeny. To address this problem, we developed a nonstationary and nonhomogeneous model accounting for compositional biases. Unlike previous nonstationary models, which are branchwise, that is, assume that base composition only changes at the nodes of the tree, in our model, the process of compositional drift is totally uncoupled from the speciation events. In addition, the total number of events of compositional drift distributed across the tree is directly inferred from the data. We implemented the method in a Bayesian framework, relying on Markov Chain Monte Carlo algorithms, and applied it to several nucleotidic data sets. In most cases, the stationarity assumption was rejected in favor of our nonstationary model. In addition, we show that our method is able to resolve a well-known artifact. By Bayes factor evaluation, we compared our model with 2 previously developed nonstationary models. We show that the coupling between speciations and compositional shifts inherent to branchwise models may lead to an overparameterization, resulting in a lesser fit. In some cases, this leads to incorrect conclusions, concerning the nature of the compositional biases. In contrast, our compound model more flexibly adapts its effective number of parameters to the data sets under investigation. Altogether, our results show that accounting for nonstationary sequence evolution may require more elaborate and more flexible models than those currently used. This article was published in Mol Biol Evol and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords