alexa A biological approach to treating disc degeneration: not for today, but maybe for tomorrow.
Neurology

Neurology

Journal of Spine

Author(s): Alini M, Roughley PJ, Antoniou J, Stoll T, Aebi M

Abstract Share this page

Abstract The intervertebral disc unites the vertebrae in the spine, providing the flexibility required for bending and twisting and resisting the compression inflicted by gravity when in an upright posture. The discs have a complex structure, with the outer annulus fibrosus having lamellae of organized collagen fibrils and the inner nucleus pulposus having a more random collagen organization and an abundance of aggregating proteoglycans. This composite nature endows the disc with both the tension-resisting properties of a ligament and the compression-resisting properties of articular cartilage. Unfortunately, disc structure and function does not remain optimal throughout life, but undergoes progressive degeneration, commencing in the young adult, and is particularly evident in the nucleus pulposus. With time, disc degeneration may result in clinical symptoms, such as low back pain, and require medical intervention. Such treatment may involve removal of the offending disc by surgery rather than its repair, which would be the preferred course of action. In the near future, current bioengineering techniques may offer the possibility of repairing the damaged disc, if an engineered tissue with the appropriate functional properties can be generated to augment the ailing disc. In this report, we summarized our recent results, in which disc cells were implanted into a scaffold of collagen and hyaluronan, or entrapped into a chitosan gel, and growth factors were used to modulate matrix synthesis in an attempt to produce a tissue with a similar molecular composition to native nucleus pulposus tissue.
This article was published in Eur Spine J and referenced in Journal of Spine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version