alexa A biological loss of endosulfan and related chlorinated organic compounds from aqueous systems in the presence and absence of oxygen.


Journal of Environmental & Analytical Toxicology

Author(s): Guerin TF

Abstract Share this page

Abstract Endosulfan is a cyclodiene organochlorine currently widely used as an insecticide throughout the world. This study reports that the endosulfan isomers can be readily dissipated from aqueous systems at neutral pH in the absence of biological material or chemical catalysts, in the presence or absence of oxygen. The study showed that aldrin, dieldrin, and endosulfan exhibit bi-phasic loss from water in unsealed and butyl rubber sealed vessels. Half-lives are substantially increased for endosulfan I when oxygen is removed from the incubation vessel. The study conditions, where PTFE was used, were such that loss due to volatilization and alkaline chemical hydrolysis was eliminated. Half-lives determined from these data indicate that the parent isomers are much less persistent than the related cyclodienes, aldrin and dieldrin, confirming the findings of previous studies. The major oxidation product of endosulfans I and II, endosulfan sulfate, is less volatile and can persist longer than either of the parent isomers. Endosulfan sulfate was not formed in any of the treatments suggesting that it would not be formed in aerated waters in the absence of microbial activity or strong chemical oxidants. Since endosulfan sulfate is formed in many environments through biological oxidation, and is only slowly degraded (both chemically in sterile media and biologically), it represents a predominant residue of technical grade endosulfan, which finds its way into aerobic and anaerobic aquatic environments. The data obtained contributes to and confirms the existing body of half-life data on endosulfan I and II and its major oxidation product, endosulfan sulfate. The half-life data generated from the current study can be used in models for predicting the loss of chlorinated cyclodiene compounds from aqueous systems. The findings also highlight the importance of critically reviewing half-life data, to determine what the predominant processes are that are acting on the compounds under study.
This article was published in Environ Pollut and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version