alexa A casein kinase I isoform is required for proper cell cycle progression in the fertilized mouse oocyte.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Down Syndrome & Chromosome Abnormalities

Author(s): Gross SD, Simerly C, Schatten G, Anderson RA

Abstract Share this page


Casein kinase I is a family of serine/threonine protein kinases common to all eukaryotes. In yeast, casein kinase I homologues have been linked to the regulation of growth, DNA repair and cell division. In addition, their subcellular localization to membraneous structures and the nucleus is essential for function. In higher eukaryotes, there exist seven genetically distinct isoforms: (alpha), ss, (gamma)1, (gamma)2, (gamma)3, (delta) and (epsilon). Casein kinase I(alpha) exhibits a cell cycle-dependent subcellular localization including an association with cytosolic vesicular structures and the nucleus during interphase, and the spindle during mitosis. casein kinase I has also been shown to modulate critical regulators of growth and DNA synthesis/repair in mammalian cells such as SV40 large T antigen and p53. These results suggest that casein kinase I may be involved in processes similar to those ascribed to the yeast casein kinase I homologues. To define a role for casein kinase I(alpha) in cell cycle regulation, the mouse oocyte was utilized because of its well-defined cell cycle and ease of micromanipulation. Immunofluorescence studies from meiosis I of maturation to the first zygotic cleavage demonstrated that the kinase was associated with structures similar to those previously reported. Microinjection of casein kinase I(alpha) antibodies at metaphase II-arrest and G2 phase, had no effect on the completion of second meiosis or first division. However, microinjection of these antibodies during the early pronucleate phase prior to S-phase onset blocked uptake of the kinase into pronuclei and interfered with proper and timely cell cycle progression to first cleavage. These results suggest that the kinase regulates the progression from interphase to mitosis during the first cell cycle.

  • To read the full article Visit
  • Open Access
This article was published in J Cell Sci and referenced in Journal of Down Syndrome & Chromosome Abnormalities

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version