alexa A central composite design to investigate the thermal stabilization of lysozyme.
Chemistry

Chemistry

Natural Products Chemistry & Research

Author(s): Branchu S, Forbes RT, York P, Nyqvist H

Abstract Share this page

Abstract PURPOSE: The formulation and processing of protein drugs requires the stabilization of the native, biologically active structure. Our aim was to investigate the thermal stability of a model protein, lysozyme, in the presence of two model excipients, sucrose and hydroxypropyl-beta-cyclodextrin (HP-beta-CD). METHODS: We used high sensitivity differential scanning calorimetry (HSDSC) in combination with a central composite design (CCD). As indicators of protein thermal stability, the measured responses were the unfolding transition temperature (Tm), the onset temperature of the denaturation (To), and the extrapolated onset temperature (To,e). RESULTS: A highly significant (F probability <0.001) statistical model resulted from analysis of the data The largest effect was due to pH (over the range 3.2-7.2), and the pH value that maximized Tm was 4.8. Several minor but significant effects were detected that were useful for mechanistic understanding. In particular, the effects of protein concentration and cyclodextrin concentration on Tm and To,e were found to be pH-dependent This was indicative of the partially hydrophilic nature of protein-protein interactions and protein-cyclodextrin interactions, respectively. CONCLUSIONS: Response surface methodology (RSM) proved efficient for the modeling and optimization of lysozyme thermal stability as well as for the physical understanding of the protein-sugar-cyclodextrin system in aqueous solution.
This article was published in Pharm Res and referenced in Natural Products Chemistry & Research

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords