alexa A CMOS Single-Chip Gas Recognition Circuit for Metal Oxide Gas Sensor Arrays


Journal of Electrical & Electronic Systems

Author(s): Kwan Ting Ng, Farid Boussaid, Amine Bermak

Abstract Share this page

This paper presents a CMOS single-chip gas recognition circuit, which encodes sensor array outputs into a unique sequence of spikes with the firing delay mapping the strength of the stimulation across the array. The proposed gas recognition circuit examines the generated spike pattern of relative excitations across the population of sensors and looks for a match within a library of 2-D spatio-temporal spike signatures. Each signature is drift insensitive, concentration invariant and is also a unique characteristic of the target gas. This VLSI friendly approach relies on a simple spatio-temporal code matching instead of existing computationally expensive pattern matching statistical techniques. In addition, it relies on a novel sensor calibration technique that does not require control or prior knowledge of the gas concentration. The proposed gas recognition circuit was implemented in a 0.35 μm CMOS process and characterized using an in-house fabricated 4 × 4 tin oxide gas sensor array. Experimental results show a correct detection rate of 94.9% when the gas sensor array is exposed to propane, ethanol and carbon monoxide.

This article was published in IEEE Transactions on Circuits and Systems I: Regular Papers and referenced in Journal of Electrical & Electronic Systems

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version