alexa A comparative investigation on the biosorption of lead by filamentous fungal biomass.
Environmental Sciences

Environmental Sciences

Journal of Pollution Effects & Control

Author(s): Lo W, Chua H, Lam KH, Bi SP

Abstract Share this page

Abstract The removal of lead from aqueous solutions by adsorption on filamentous fungal biomass was studied. Batch biosorption experiments were performed to screen a series of selected fungal strains for effective lead removal at different metal and biomass concentrations. Biosorption of the Pb2+ ions was strongly affected by pH. The fungal biomass exhibited the highest lead adsorption capacity at pH 6. Isotherms for the biosorption of lead on fungal biomass were developed and the equilibrium data fitted well to the Langmuir isotherm model. At pH 6, the maximum lead biosorption capacity of Mucor rouxii estimated with the Langmuir model was 769 mg/g dry biomass, significantly higher than that of most microorganisms. Biomass of Mucor rouxii showed specific selectivity for Pb2+ over other metals ions such as Zn2+, Ni2+ and Cu2+. This fungal strain may be applied to develop potentially cost-effective biosorbent for removing lead from effluents. The technique of scanning electron microscopy coupled with X-ray dispersion analysis shows that Pb2+ has exchanged with K+ and Ca2+ on the cell wall of Mucor rouxii, thereby suggesting ion exchange as one of the dominant mechanisms of metal biosorption for this fungal strain.
This article was published in Chemosphere and referenced in Journal of Pollution Effects & Control

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords