alexa A comparative study of statistical methods used to identify dependencies between gene expression signals
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Suzana de Siqueira Santos, Daniel Yasumasa Takahashi, Asuka Nakata, Andr Fujita

Abstract Share this page

One major task in molecular biology is to understand the dependency among genes to model gene regulatory networks. Pearson's correlation is the most common method used to measure dependence between gene expression signals, but it works well only when data are linearly associated. For other types of association, such as non-linear or non-functional relationships, methods based on the concepts of rank correlation and information theory-based measures are more adequate than the Pearson's correlation, but are less used in applications, most probably because of a lack of clear guidelines for their use. This work seeks to summarize the main methods (Pearson's, Spearman's and Kendall's correlations; distance correlation; Hoeffding's D: measure; Heller-Heller-Gorfine measure; mutual information and maximal information coefficient) used to identify dependency between random variables, especially gene expression data, and also to evaluate the strengths and limitations of each method. Systematic Monte Carlo simulation analyses ranging from sample size, local dependence and linear/non-linear and also non-functional relationships are shown. Moreover, comparisons in actual gene expression data are carried out. Finally, we provide a suggestive list of methods that can be used for each type of data set.

This article was published in Brief Bioinform and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 8th International Conference on Proteomics and Bioinformatics   
    May 22-24, 2017 Osaka, Japan
  • 9th International Conference on Genomics and Proteomics
    June 15-16, 2017 London, UK
  • 3rd World Congress on Human Genetics
    August 14-15, 2017 Edinburgh, Scotland
  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version