alexa A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochlorite and Fenton reagent.
Chemical Engineering

Chemical Engineering

Journal of Chemical Engineering & Process Technology

Author(s): Szpyrkowicz L, Juzzolino C, Kaul SN

Abstract Share this page

Abstract The results of an experimental study on the destruction of disperse dyes by chemical oxidation using ozone, hypochlorite and Fenton reagent (H2O2 + Fe2+) are compared with the data obtained by electrochemical oxidation. While the results obtained during hypochlorite oxidation were not satisfactory (only 35\% reduction of colour was achieved at a dose of 6 g dm(-3)), ozonation enabled colour to be reduced by up to 90\% (ozone dose 0.5 g dm(-3)). A high decolourisation degree was however accompanied by a low removal (10\% efficiency) of chemical oxygen demand (COD). Trials of electrochemical oxidation proved this process much more efficient. Under the conditions of an acidic pH in 40 min of electrolysis a 79\% elimination of COD was achieved at the Ti/Pt-Ir anode, which proved the best of seven different tested materials. Simultaneously 90\% colour was removed. Indirect oxidation, by means of chlorine-deriving compounds, was the predominating process leading to the pollutants depletion. The best treatment results were obtained with the Fenton process, which under the optimal pH equal to 3 and hydrogen peroxide and ferrous sulphide dose of 600 and 550 mg dm(-3), respectively, resulted in a final effluent being colourless and with the residual COD equal to 100 mg dm(-3).
This article was published in Water Res and referenced in Journal of Chemical Engineering & Process Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords