alexa A comparison of prediction equations for estimating glomerular filtration rate in adults without kidney disease.


Journal of Drug Metabolism & Toxicology

Author(s): Lin J, Knight EL, Hogan ML, Singh AK

Abstract Share this page

Abstract The ability of the Modification of Renal Disease (MDRD) equation to predict GFR when compared with multiple other prediction equations in healthy subjects without known kidney disease was analyzed. Between May 1995 and December 2001, a total of 117 healthy individuals underwent (125)I-iothalamate or (99m)Tc-diethylenetriamine-pentaacetic acid (DTPA) renal studies as part of a routine kidney donor evaluation at either Brigham and Women's Hospital or Boston Children's Hospital. On chart review, 100 individuals had sufficient data for analysis. The MDRD 1, MDRD 2 (simplified MDRD equation), Cockcroft-Gault (CG), Cockcroft-Gault corrected for GFR (CG-GFR), and other equations were tested. The median absolute difference in ml/min per 1.73 m(2) between calculated and measured GFR was 28.7 for MDRD 1, 18.5 for MDRD 2, 33.1 for CG, and 28.6 for CG-GFR in the (125)I-iothalamate group and was 31.1 for MDRD 1, 38.2 for MDRD 2, 22.0 for CG, and 31.1 for CG-GFR in the (99m)Tc-DTPA group. Bias was -0.5, -3.3, 25.6, and 5.0 for MDRD 1, MDRD 2, CG, and CG-GFR, respectively, in subjects who received (125)I-iothalamate and -33.2, -36.5, 6.0, and -15.0 for MDRD 1, MDRD 2, CG, and CG-GFR, respectively, in those who received (99m)Tc-DTPA studies. Precision testing, as measured by linear regression, yielded R(2) values of 0.04 for CG, 0.05 for CG-GFR, 0.15 for MDRD 1, and 0.14 for MDRD in those who underwent (125)I-iothalamate studies and 0.18 for CG, 0.21 for CG-GFR, 0.40 for MDRD 1, and 0.38 for MDRD 2 for those who underwent (99m)Tc-DTPA studies. The MDRD equations were more accurate within 30 and 50\% of the measured GFR compared with the CG and CG-GFR equations. When compared with the CG equation, the MDRD equations are more precise and more accurate for predicting GFR in healthy adults. The MDRD equations, however, consistently underestimate GFR, whereas the CG equations consistently overestimate measured GFR in people with normal renal function. In potential kidney donors, prediction equations may not be sufficient for estimating GFR; radioisotope studies may be needed for a better assessment of GFR. Further studies are needed to derive and assess GFR prediction equations in people with normal or mildly impaired renal function.
This article was published in J Am Soc Nephrol and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version