alexa A comparison of thermodynamic approaches to predict the adhesion of dairy microorganisms to solid substrata.


Journal of Biosensors & Bioelectronics

Author(s): BellonFontaine MN, Mozes N, van der Mei HC, Sjollema J, Cerf O,

Abstract Share this page

Abstract Four different thermodynamic approaches were compared on their usefulness to predict correctly the adhesion of two fouling microogranisms from dairy processing to various solid substrata. The surface free energies of the interacting surfaces were derived from measured contact angles according to: 1. The equation of state; 2. The geometric-mean equation using dispersion and polar components neglecting spreading pressures; 3. The geometric-mean equation using dispersion and polar components while accounting for spreading pressures; and 4. The Lifshitz-van der Waals/Acid-Base approach. All approaches yielded similar surface free energies for the low energy surfaces. Application of approach 1 with different liquids did not give consistent values for the high surface free energy substrata. The dispersion or Lifshiftz-van der Waals components were nearly equal for approaches 2, 3, and 4; however, the polar or acid-base components differed greatly according to the approach followed. Approaches 1 and 2 correctly predicted that adhesion should occur, although the trend with respect to the various solid substrata was opposite the one experimentally observed, as was also the trend predicted by approach 4. Only approach 3 correctly predicted the observed bacterial adhesion with respect to the various solid substrata. In approach 3 and 4, adhesion was frequently found, despite a positive free energy of adhesion. This was attributed to either possible local attractive electrostatic interactions, inadequate weighing of surface free energy components in the calculation of free energies of adhesion, or to additional forces arising from structured interfacial water.
This article was published in Cell Biophys and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version