alexa A compendium of signals and responses triggered by prodeath and prosurvival cytokines.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA,

Abstract Share this page

Abstract Cell-signaling networks consist of proteins with a variety of functions (receptors, adaptor proteins, GTPases, kinases, proteases, and transcription factors) working together to control cell fate. Although much is known about the identities and biochemical activities of these signaling proteins, the ways in which they are combined into networks to process and transduce signals are poorly understood. Network-level understanding of signaling requires data on a wide variety of biochemical processes such as posttranslational modification, assembly of macromolecular complexes, enzymatic activity, and localization. No single method can gather such heterogeneous data in high throughput, and most studies of signal transduction therefore rely on series of small, discrete experiments. Inspired by the power of systematic datasets in genomics, we set out to build a systematic signaling dataset that would enable the construction of predictive models of cell-signaling networks. Here we describe the compilation and fusion of approximately 10,000 signal and response measurements acquired from HT-29 cells treated with tumor necrosis factor-alpha, a proapoptotic cytokine, in combination with epidermal growth factor or insulin, two prosurvival growth factors. Nineteen protein signals were measured over a 24-h period using kinase activity assays, quantitative immunoblotting, and antibody microarrays. Four different measurements of apoptotic response were also collected by flow cytometry for each time course. Partial least squares regression models that relate signaling data to apoptotic response data reveal which aspects of compendium construction and analysis were important for the reproducibility, internal consistency, and accuracy of the fused set of signaling measurements. We conclude that it is possible to build self-consistent compendia of cell-signaling data that can be mined computationally to yield important insights into the control of mammalian cell responses. This article was published in Mol Cell Proteomics and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version