alexa A computer filtering method to drive out tiny genes from the yeast genome.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Phylogenetics & Evolutionary Biology

Author(s): Barry C, Fichant G, Kalogeropoulos A, Quentin Y, Barry C, Fichant G, Kalogeropoulos A, Quentin Y

Abstract Share this page

Abstract The authors of the first yeast chromosome sequence defined a minimum threshold requirement of 100 codons, above which an open reading frame (ORF) is retained as a putative coding sequence. However, at least 58 yeast genes shorter than 100 codons have an assigned protein function. Therefore, the yeast genome may contain other tiny but functionally important genes that are discarded from analyses by this simple filtering rule. We have established discriminant functions from the in-phase hexamer frequencies of functional genes and of simulated ORFs derived from a stationary Markov chain model. Fifty-two out of the 58 genes were recognized as coding ORFs by our discriminating method. The test was also applied to all the small ORFs (36 to 100 codons) found in the intergenic regions of published chromosomes. It retained 140 new potential tiny coding sequences, among which we identified seven new genes by similarity searches. Our method, used conjointly with similarity searches, can also highlight sequencing errors resulting from the disruption of the coding frame of longer ORFs. This method, by its ability to detect potential coding ORFs, can be a very useful tool for functional analysis. This article was published in Yeast and referenced in Journal of Phylogenetics & Evolutionary Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords