alexa A density functional study of clean and hydrogen-covered α-MoO3(010):α-MoO3(010): Electronic structure and surface relaxation
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): M Chen, U V Waghmare, C M Friend, Efthimios Kaxiras

Abstract Share this page

We report extensive density functional theory calculations, using pseudopotentials with a plane-wave basis, for the properties of the (010) face of molybdenum trioxide (α-MoO3).(α-MoO3). The surface is modeled by a one-layer slab. Calculated bond lengths compare favorably with experimental measurements. The bonding of the different oxygen species to molybdenum is analyzed using the crystal orbital overlap population. This analysis indicates that the bonding is a combination of ionic and covalent character for all oxygen species. The terminal oxygen exhibits covalent bonding to Mo which is stronger than either of the two bridging oxygens. We also study the adsorption of hydrogen on this surface. Hydrogen is most strongly adsorbed over the terminal oxygen, followed by the asymmetric bridging oxygen, and then the symmetric bridging oxygen. This trend is explained in terms of simple chemical concepts. The inclusion of full surface relaxation is important for even a qualitative description of adsorbate bonding.

This article was published in The Journal of Chemical Physics and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords