alexa A dried yeast fermentate selectively modulates both the luminal and mucosal gut microbiota and protects against inflammation, as studied in an integrated in vitro approach.
Veterinary Sciences

Veterinary Sciences

Journal of Veterinary Science & Technology

Author(s): Possemiers S, Pinheiro I, Verhelst A, Van den Abbeele P, Maignien L,

Abstract Share this page

Abstract EpiCor, derived from Saccharomyces cerevisiae, has been shown to have immunomodulating properties in human clinical trials and in vitro. However, the underlying mechanisms behind its immune protection via the gut remain largely unknown. Therefore, the aim of this study was to use an integrated in vitro approach to evaluate the metabolism of EpiCor by the intestinal microflora, its modulating effect on the gut microbiota, and its anti-inflammatory activity on human-derived cell lines. Using the SHIME model, in combination with a mucus adhesion assay, has shown that low doses of EpiCor have a prebiotic-like modulatory effect on the luminal- and mucosa-associated microbiota. These include gradual changes in general community structure, reduction of potential pathogens, quantitative increase in lactobacilli, and qualitative modulation of bifidobacteria. Moreover, by combination of the SHIME with Caco-2 cells and Caco-2/THP1 cocultures, a significant decrease in pro-inflammatory cytokines was observed at the end of the treatment period. This article was published in J Agric Food Chem and referenced in Journal of Veterinary Science & Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version