alexa A dynamic model for the allosteric mechanism of GroEL.
Chemistry

Chemistry

Journal of Physical Chemistry & Biophysics

Author(s): Ma J, Sigler PB, Xu Z, Karplus M

Abstract Share this page

Abstract GroEL-assisted protein folding is regulated by a cycle of large coordinated domain movements in the 14-subunit double-ring assembly. The transition path between the closed (unliganded) and the open (liganded) states, calculated with a targeted molecular dynamics simulation, shows the highly complex subunit displacements required for the allosteric transition. The early downward motion of the small intermediate domain induced by nucleotide binding emerges as the trigger for the larger movements of the apical and equatorial domains. The combined twisting and upward displacement of the apical domain determined for a single subunit is accommodated easily in the heptamer ring only if its opening is concerted. This is a major source of cooperative ligand binding within a ring. It suggests also that GroEL has evolved so that the motion required for heptamer cooperativity is encoded in the individual subunits. A calculated model for a di-cis 14-subunit assembly is found to be destabilized by strong steric repulsion between the equatorial domains of the two rings, the source of negative cooperativity. The simulation results, which indicate that transient interactions along the transition path are essential for GroEL function, provide a detailed structural description of the motions that are involved in the GroEL allosteric cycle. Copyright 2000 Academic Press. This article was published in J Mol Biol and referenced in Journal of Physical Chemistry & Biophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Applied Chemistry  
    October 16-17, 2017 Toronto, Canada
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords