alexa A fast ranking algorithm for predicting gene functions in biomolecular networks.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Re M, Mesiti M, Valentini G

Abstract Share this page

Abstract Ranking genes in functional networks according to a specific biological function is a challenging task raising relevant performance and computational complexity problems. To cope with both these problems we developed a transductive gene ranking method based on kernelized score functions able to fully exploit the topology and the graph structure of biomolecular networks and to capture significant functional relationships between genes. We run the method on a network constructed by integrating multiple biomolecular data sources in the yeast model organism, achieving significantly better results than the compared state-of-the-art network-based algorithms for gene function prediction, and with relevant savings in computational time. The proposed approach is general and fast enough to be in perspective applied to other relevant node ranking problems in large and complex biological networks. This article was published in IEEE/ACM Trans Comput Biol Bioinform and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords