alexa A graph-based evolutionary algorithm: Genetic Network Programming (GNP) and its extension using reinforcement learning.
Engineering

Engineering

International Journal of Swarm Intelligence and Evolutionary Computation

Author(s): Mabu S, Hirasawa K, Hu J

Abstract Share this page

Abstract This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods. This article was published in Evol Comput and referenced in International Journal of Swarm Intelligence and Evolutionary Computation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Data Structures and Data Mining
    August 17-18, 2017, Toronto, Canada
  • 4th International Conference on BigData Analysis and Data Mining
    September 07-08, 2017, Paris, France
  • 6th International Conference on Biostatistics and Bioinformatics
    Nov 13-14, 2017, Atlanta, USA
  • 4th World Congress on Robotics and Artificial Intelligence
    October 23-24, 2017
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords