alexa A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.


Journal of Clinical & Experimental Ophthalmology

Author(s): Sanderson J, Marcantonio JM, Duncan G

Abstract Share this page

Abstract PURPOSE: Cortical cataract in humans is associated with Ca2+ overload and protein loss, and although animal models of cataract have implicated Ca2+-activated proteases in this process, it remains to be determined whether the human lens responds in this manner to conditions of Ca2+ overload. The purpose of these experiments was to investigate Ca2+-induced opacification and proteolysis in the organ-cultured human lens. METHODS: Donor human lenses were cultured in Eagle's minimum essential medium (EMEM) for up to 14 days. The Ca2+ ionophore ionomycin was used to induce a Ca2+ overload. Lenses were loaded with [3H]-amino acids for 48 hours. After a 24-hour control efflux period, lenses were cultured in control EMEM (Ca2+ 1.8 mM), EMEM + 5 microM ionomycin, or EMEM + 5 microM ionomycin + 5 mM EGTA (Ca2+ < 1 microM). Efflux of proteins and transparency were monitored daily. Protein distribution and cytoskeletal proteolysis were analyzed at the end of the experiment. Cytoskeletal proteins were isolated and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Western blot analyses were probed with anti-vimentin antibody (clone V9) and detected by enhanced chemiluminescence. RESULTS: Lenses cultured under control conditions remained transparent for 14 days in EMEM with no added supplements or serum. The lenses synthesized proteins and had a low rate of protein efflux throughout the experimental period. Ionomycin treatment resulted in cortical opacification, which was inhibited when external Ca2+ was chelated with EGTA. Exposure to ionomycin also led to an efflux of [3H]-labeled protein, amounting to 41\% of the labeled protein over the 7-day experimental period, compared with 12\% in ionomycin + EGTA-treated lenses. Efflux was accounted for by loss from the lens soluble protein (crystallin) fraction. Western blot analysis of the cytoskeletal protein vimentin (56 kDa) revealed a distinct breakdown product of 48 kDa in ionomycin-treated lenses that was not present when Ca2+ was chelated with EGTA. In addition, high-molecular-weight proteins (approximately 115 kDa and 235 kDa) that cross-reacted with the vimentin antibody were observed in ionomycin-treated lenses. The Ca2+-induced changes were not age dependent. CONCLUSIONS: Human lenses can be successfully maintained in vitro, remaining transparent for extended periods. Increased intracellular Ca2+ induces cortical opacification in the human lens. Ca2+-dependent cleavage and cross-linking of vimentin supports possible roles for calpain and transglutaminase in the opacification process. This human lens calcium-induced opacification (HLCO) model enables investigation of the molecular mechanisms of opacification, and the data help to explain the loss of protein observed in human cortical cataractous lenses in vivo.
This article was published in Invest Ophthalmol Vis Sci and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version