alexa A hybrid twin screw extrusion electrospinning method to process nanoparticle-incorporated electrospun nanofibres.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Erisken C, Kalyon DM, Wang H

Abstract Share this page

Abstract A new hybrid methodology that fully integrates the processing capabilities of the twin screw extrusion process (conveying solids, melting, dispersive and distributive mixing, pressurization, temperature profiling, devolatilization) with electrospinning is described. The hybrid process is especially suited to the dispersion of nanoparticles into polymeric binders and the generation of nanoparticle-incorporated fibres and nanofibres. The new technology base is demonstrated with the dispersion of β-tricalcium phosphate (β-TCP) nanoparticles into poly(ε-caprolactone) (PCL) to generate biodegradable non-woven meshes that can be targeted as scaffolds for tissue engineering applications. The new hybrid method yielded fibre diameters in the range of 200-2000 nm for both PCL and β-TCP/PCL (35\% by weight) composite scaffolds. The degree of crystallinity of polycaprolactone meshes could be manipulated in the 35.1-41\% range, using the voltage strength as a parameter. The electrospinning process, integrated with dispersive kneading disc elements, facilitated the decrease of the cluster sizes and allowed the continuous compounding of the nanoparticles into the biodegradable polymer prior to electrospinning. Thermogravimetric analysis (TGA) of the non-woven meshes validated the continuous incorporation of 35 ± 1.5\% (by weight) β-TCP nanoparticles for a targeted concentration of 35\%. Uniaxial tensile testing of the meshes with and without the nanoparticles indicated that the ultimate tensile strength at break of the meshes increased from 0.47 ± 0.04 to 0.79 ± 0.08 MPa upon the incorporation of the β-TCP nanoparticles. This demonstration study suggests that the new technology base is particularly suitable for the concomitant dispersion and electrospinning of nanoparticles in the generation of myriad types of functional nanofibres. This article was published in Nanotechnology and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan
  • Advances in Skin, Wound Care and Tissue Science
    November 9-10, 2017 Frankfurt, Germany
  • 12th Edition of International Conference on Tissue Engineering and Regenerative Medicine
    May 10-11, 2018,Frankfurt, Germany
  • 4th International Conference on Synthetic Biology and Tissue Engineering
    June 11-12, 2018 Rome, Italy
  • 9th International Conference on Tissue Science and Regenerative Medicine
    July 19-20, 2018 Melbourne, Australia
  • 4th International Conference on Wound Care, Tissue Repair & Regenerative Medicine
    October 5-6, 2018 Los Angeles, USA
  • 9th International Conference on Tissue Engineering and Regenerative Medicine
    November 9-10 , 2018 Atlanta, Georgia ,USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords