alexa A laboratory incubation method for determining the rate of microbiological degradation of skeletal muscle tissue in soil.
General Science

General Science

Journal of Forensic Research

Author(s): Tibbett M, Carter DO, Haslam T, Major R, Haslam R

Abstract Share this page

Abstract A controlled laboratory experiment is described, in principle and practice, which can be used for the of determination the rate of tissue decomposition in soil. By way of example, an experiment was conducted to determine the effect of temperature (12 degrees, 22 degrees C) on the aerobic decomposition of skeletal muscle tissue (Organic Texel x Suffolk lamb (Ovis aries)) in a sandy loam soil. Measurements of decomposition processes included muscle tissue mass loss, microbial CO2 respiration, and muscle tissue carbon (C) and nitrogen (N). Muscle tissue mass loss at 22 degrees C always was greater than at 12 degrees C (p < 0.001). Microbial respiration was greater in samples incubated at 22 degrees C for the initial 21 days of burial (p < 0.01). All buried muscle tissue samples demonstrated changes in C and N content at the end of the experiment. A significant correlation (p < 0.001) was demonstrated between the loss of muscle tissue-derived C (Ct) and microbially-respired C (Cm) demonstrating CO2 respiration may be used to predict mass loss and hence biodegradation. In this experiment Q10 (12 degrees C-22 degrees C) = 2.0. This method is recommended as a useful tool in determing the effect of environmental variables on the rate of decomposition of various tissues and associated materials.
This article was published in J Forensic Sci and referenced in Journal of Forensic Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version