alexa A low fluence Q-switched Nd:YAG laser modifies the 3D structure of melanocyte and ultrastructure of melanosome by subcellular-selective photothermolysis.
Dermatology

Dermatology

Journal of Clinical & Experimental Dermatology Research

Author(s): Mun JY, Jeong SY, Kim JH, Han SS, Kim IH

Abstract Share this page

Abstract Laser treatment using low fluence for melasma was previously introduced to overcome postinflammatory hypermelanosis after Q-switched laser therapy. However, research on the mechanism of this treatment is very limited. In this study, a collimated low fluence 1064 nm Q-switched Nd:YAG laser with a pulse width of <7 ns was applied using top-hat beam mode. The aim of this study was to investigate the mode of action of this laser treatment through electron microscopy. The effectiveness of this treatment was confirmed by clinical photos, melasma area and severity index and spectrophotometer. To understand the mode of action, the three-dimensional structure of melanocytes in the epidermis was analyzed using serial images acquired by a 3VIEW surface block face scanning electron microscope. In the epidermis, after laser treatment, fewer dendrites in the melanocytes were observed compared with pretreatment. In addition, ultrastructural changes in the melanosome were studied using transmission electron microscopy, which showed that laser treatment caused selective photothermolysis on Stage IV melanosome. Therefore, this treatment should be regarded as an effective method for treating melasma through subcellular-selective photothermolysis. This article was published in J Electron Microsc (Tokyo) and referenced in Journal of Clinical & Experimental Dermatology Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords