alexa A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences.
Engineering

Engineering

Biosensors Journal

Author(s): Pauly O, Heibel H, Navab N, Pauly O, Heibel H, Navab N

Abstract Share this page

Abstract Deformable guide-wire tracking in fluoroscopic sequences is a challenging task due to the low signal to noise ratio of the images and the apparent complex motion of the object of interest. Common tracking methods are based on data terms that do not differentiate well between medical tools and anatomic background such as ribs and vertebrae. A data term learned directly from fluoroscopic sequences would be more adapted to the image characteristics and could help to improve tracking. In this work, our contribution is to learn the relationship between features extracted from the original image and the tracking error. By randomly deforming a guide-wire model around its ground truth position in one single reference frame, we explore the space spanned by these features. Therefore, a guide-wire motion distribution model is learned to reduce the intrisic dimensionality of this feature space. Random deformations and the corresponding features can be then automatically generated. In a regression approach, the function mapping this space to the tracking error is learned. The resulting data term is integrated into a tracking framework based on a second-order MAP-MRF formulation which is optimized by QPBO moves yielding high-quality tracking results. Experiments conducted on two fluoroscopic sequences show that our approach is a promising alternative for deformable tracking of guide-wires.
This article was published in Med Image Comput Comput Assist Interv and referenced in Biosensors Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords