alexa A machine learning approach for deformable guide-wire tracking in fluoroscopic sequences.


Biosensors Journal

Author(s): Pauly O, Heibel H, Navab N

Abstract Share this page

Abstract Deformable guide-wire tracking in fluoroscopic sequences is a challenging task due to the low signal to noise ratio of the images and the apparent complex motion of the object of interest. Common tracking methods are based on data terms that do not differentiate well between medical tools and anatomic background such as ribs and vertebrae. A data term learned directly from fluoroscopic sequences would be more adapted to the image characteristics and could help to improve tracking. In this work, our contribution is to learn the relationship between features extracted from the original image and the tracking error. By randomly deforming a guide-wire model around its ground truth position in one single reference frame, we explore the space spanned by these features. Therefore, a guide-wire motion distribution model is learned to reduce the intrisic dimensionality of this feature space. Random deformations and the corresponding features can be then automatically generated. In a regression approach, the function mapping this space to the tracking error is learned. The resulting data term is integrated into a tracking framework based on a second-order MAP-MRF formulation which is optimized by QPBO moves yielding high-quality tracking results. Experiments conducted on two fluoroscopic sequences show that our approach is a promising alternative for deformable tracking of guide-wires.
This article was published in Med Image Comput Comput Assist Interv and referenced in Biosensors Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version