alexa A Markov random field model for network-based analysis of genomic data.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular Biomarkers & Diagnosis

Author(s): Wei Z, Li H

Abstract Share this page

Abstract MOTIVATION: A central problem in genomic research is the identification of genes and pathways involved in diseases and other biological processes. The genes identified or the univariate test statistics are often linked to known biological pathways through gene set enrichment analysis in order to identify the pathways involved. However, most of the procedures for identifying differentially expressed (DE) genes do not utilize the known pathway information in the phase of identifying such genes. In this article, we develop a Markov random field (MRF)-based method for identifying genes and subnetworks that are related to diseases. Such a procedure models the dependency of the DE patterns of genes on the networks using a local discrete MRF model. RESULTS: Simulation studies indicated that the method is quite effective in identifying genes and subnetworks that are related to disease and has higher sensitivity and lower false discovery rates than the commonly used procedures that do not use the pathway structure information. Applications to two breast cancer microarray gene expression datasets identified several subnetworks on several of the KEGG transcriptional pathways that are related to breast cancer recurrence or survival due to breast cancer. CONCLUSIONS: The proposed MRF-based model efficiently utilizes the known pathway structures in identifying the DE genes and the subnetworks that might be related to phenotype. As more biological networks are identified and documented in databases, the proposed method should find more applications in identifying the subnetworks that are related to diseases and other biological processes. This article was published in Bioinformatics and referenced in Journal of Molecular Biomarkers & Diagnosis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords