alexa A mathematical model for copper homeostasis in Enterococcus hirae.
Chemistry

Chemistry

Industrial Chemistry

Author(s): Pcou E, Maass A, Remenik D, Briche J, Gonzalez M

Abstract Share this page

Abstract Copper is an essential micronutrient for life. It is required by a wide range of species, from bacteria to yeast, plants and mammals including humans. To prevent the consequences of the excess or deficit of copper, living organisms have developed molecular mechanisms that regulate the uptake, efflux, storage and use of the metal. However, the limits of homeostatic regulation are not known. Here, we take advantage of a simple biological mechanism involved in copper metabolism of Enterococcus hirae, to explore how the regulation is achieved by using a set of four proteins codified in the cop operon: two P-type ATP-ases copper transporters, one copper chaper-one and one Cu-response transcription factor. We propose a mathematical model, based on differential equations and the power-law formalism (see M.A. Savageau, Chaos 11(1) (2001) 142-159), for the behavior of the cop operon and we show that homeostasis is a result of transient dynamics. The results derived from the mathematical model allow to measure qualitatively the adaptability of the system to its environment. This detailed model has been possible thanks to the available experimental biological information provided in a sequence of recent works by Solioz and co-workers. This article was published in Math Biosci and referenced in Industrial Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords