alexa A meta-analysis of asbestos-related cancer risk that addresses fiber size and mineral type.
Infectious Diseases

Infectious Diseases

Epidemiology: Open Access

Author(s): Berman DW, Crump KS

Abstract Share this page

Abstract Quantitative estimates of the risk of lung cancer or mesothelioma in humans from asbestos exposure made by the U.S. Environmental Protection Agency (EPA) make use of estimates of potency factors based on phase-contrast microscopy (PCM) and obtained from cohorts exposed to asbestos in different occupational environments. These potency factors exhibit substantial variability. The most likely reasons for this variability appear to be differences among environments in fiber size and mineralogy not accounted for by PCM. In this article, the U.S. Environmental Protection Agency (EPA) models for asbestos-related lung cancer and mesothelioma are expanded to allow the potency of fibers to depend upon their mineralogical types and sizes. This is accomplished by positing exposure metrics composed of nonoverlapping fiber categories and assigning each category its own unique potency. These category-specific potencies are estimated in a meta-analysis that fits the expanded models to potencies for lung cancer (KL's) or mesothelioma (KM's) based on PCM that were calculated for multiple epidemiological studies in our previous paper (Berman and Crump, 2008). Epidemiological study-specific estimates of exposures to fibers in the different fiber size categories of an exposure metric are estimated using distributions for fiber size based on transmission electron microscopy (TEM) obtained from the literature and matched to the individual epidemiological studies. The fraction of total asbestos exposure in a given environment respectively represented by chrysotile and amphibole asbestos is also estimated from information in the literature for that environment. Adequate information was found to allow KL's from 15 epidemiological studies and KM's from 11 studies to be included in the meta-analysis. Since the range of exposure metrics that could be considered was severely restricted by limitations in the published TEM fiber size distributions, it was decided to focus attention on four exposure metrics distinguished by fiber width: "all widths," widths > 0.2 micro m, widths < 0.4 microm, and widths < 0.2 microm, each of which has historical relevance. Each such metric defined by width was composed of four categories of fibers: chrysotile or amphibole asbestos with lengths between 5 microm and 10 microm or longer than 10 microm. Using these metrics three parameters were estimated for lung cancer and, separately, for mesothelioma: KLA, the potency of longer (length > 10 microm) amphibole fibers; rpc, the potency of pure chrysotile (uncontaminated by amphibole) relative to amphibole asbestos; and rps, the potency of shorter fibers (5 microm < length < 10 microm) relative to longer fibers. For mesothelioma, the hypothesis that chrysotile and amphibole asbestos are equally potent (rpc = 1) was strongly rejected by every metric and the hypothesis that (pure) chrysotile is nonpotent for mesothelioma was not rejected by any metric. Best estimates for the relative potency of chrysotile ranged from zero to about 1/200th that of amphibole asbestos (depending on metric). For lung cancer, the hypothesis that chrysotile and amphibole asbestos are equally potent (rpc = 1) was rejected (p < or = .05) by the two metrics based on thin fibers (length < 0.4 microm and < 0.2 microm) but not by the metrics based on thicker fibers. The "all widths" and widths < 0.4 microm metrics provide the best fits to both the lung cancer and mesothelioma data over the other metrics evaluated, although the improvements are only marginal for lung cancer. That these two metrics provide equivalent (for mesothelioma) and nearly equivalent (for lung cancer) fits to the data suggests that the available data sets may not be sufficiently rich (in variation of exposure characteristics) to fully evaluate the effects of fiber width on potency. Compared to the metric with widths > 0.2 microm with both rps and rpc fixed at 1 (which is nominally equivalent to the traditional PCM metric), the "all widths" and widths < 0.4 microm metrics provide substantially better fits for both lung cancer and, especially, mesothelioma. Although the best estimates of the potency of shorter fibers (5 < length < 10 microm) is zero for the "all widths" and widths < 0.4 microm metrics (or a small fraction of that of longer fibers for the widths > 0.2 microm metric for mesothelioma), the hypothesis that these shorter fibers were nonpotent could not be rejected for any of these metrics. Expansion of these metrics to include a category for fibers with lengths < 5 microm did not find any consistent evidence for any potency of these shortest fibers for either lung cancer or mesothelioma. Despite the substantial improvements in fit over that provided by the traditional use of PCM, neither the "all widths" nor the widths < 0.4 microm metrics (or any of the other metrics evaluated) completely resolve the differences in potency factors estimated in different occupational studies. Unresolved in particular is the discrepancy in potency factors for lung cancer from Quebec chrysotile miners and workers at the Charleston, SC, textile mill, which mainly processed chrysotile from Quebec. A leading hypothesis for this discrepancy is limitations in the fiber size distributions available for this analysis. Dement et al. (2007) recently analyzed by TEM archived air samples from the South Carolina plant to determine a detailed distribution of fiber lengths up to lengths of 40 microm and greater. If similar data become available for Quebec, perhaps these two size distributions can be used to eliminate the discrepancy between these two studies. This article was published in Crit Rev Toxicol and referenced in Epidemiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords