alexa A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactions.


Journal of Clinical & Cellular Immunology

Author(s): Heo J, Thomas KJ, Seong GH, Crooks RM

Abstract Share this page

Abstract Viable E. coli cells were entrapped in hydrogel micropatches photopolymerized within microfluidic systems. The microfluidic channels and the micropatches have sizes on the order of 100-500 microm. Small molecules, such as dyes and surfactants, present in the solution surrounding the hydrogel, are able to diffuse into the gel and encounter the cells, but the cells are sufficiently large to be retained. For example, sodium dodecyl sulfate is a lysis agent that is able to penetrate the hydrogel and disrupt the cellular membrane. Entrapment of viable cells within hydrogels, followed by lysis, could provide a convenient means for preparing biocatalysts without the need for enzyme extraction and purification. Hydrogel-immobilized cells are able to carry out chemical reactions within microfluidic channels. Specifically, a nonfluorescent dye, BCECF-AM, is able to penetrate both the hydrogel and the bacterial membrane and be converted into a fluorescent form (BCECF) by the interior cellular machinery. These results suggest that cells immobilized within microfluidic channels can act as sensors for small molecules and as bioreactors for carrying out reactions.
This article was published in Anal Chem and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version