alexa A model for early events in the assembly pathway of cyanobacterial phycobilisomes.


Biochemistry & Analytical Biochemistry

Author(s): Anderson LK, Toole CM

Abstract Share this page

Abstract Biological self-assembly is remarkable in its fidelity and in the efficient production of intricate molecular machines and functional materials from a heterogeneous mixture of macromolecules. The phycobilisome, a light-harvesting structure of cyanobacteria, presents the opportunity to study an in vivo assembly process in detail. The phycobilisome molecular architecture is defined, and crystal structures are available for all major proteins, as are a large sequence database (including a genome sequence) and effective genetic systems exist for some cyanobacteria. Recent studies on subunit interaction, covalent modification, and protein stability suggest a model for the earliest events in the phycobilisome assembly pathway. Partitioning of phycobilisome proteins between degradation and assembly is proposed to be controlled by the interaction equilibria between phycobilisome assembly partners, processing enzymes and chaperones. The model provides plausible explanations for existing observations and makes predictions that are amenable to direct experimental investigation.
This article was published in Mol Microbiol and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version