alexa A model for stress-induced growth in the developing heart.
Engineering

Engineering

International Journal of Advancements in Technology

Author(s): Lin IE, Taber LA

Abstract Share this page

Abstract Mechanical loads affect growth and morphogenesis in the developing heart. Using a theoretical model, we studied stress-modulated growth in the embryonic chick ventricle during stages 21-29 (4-6 days of a 21-day incubation period). The model is a thick-walled, compressible, pseudoelastic cylinder, with finite volumetric growth included by letting the rate of change of the local zero-stress configuration depend linearly on the Cauchy stresses. After investigating the fundamental behavior of the model, we used it to study global and local growth in the primitive ventricle due to normal and abnormal cavity pressures. With end-diastolic pressure taken as the growth-modulating stimulus, correlating theoretical and available experimental results yielded the coefficients of the growth law, which was assumed to be independent of time and loading conditions. For both normal and elevated pressures, the predicted changes in radius and wall volume during development were similar to experimental measurements. In addition, the residual stress generated by differential growth agreed with experimental data. These results suggest that wall stress may be a biomechanical factor that regulates growth in the embryonic heart.
This article was published in J Biomech Eng and referenced in International Journal of Advancements in Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version