alexa A model for the combined effects of temperature and salt concentration on growth rate of food spoilage molds.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Cuppers HG, Oomes S, Brul S

Abstract Share this page

Abstract We modeled mold growth on a solid culture medium at various temperatures and NaCl concentrations by using five common food spoilage molds (Penicillium roqueforti, Trichoderma harzianum, Paecilomyces variotii, Aspergillus niger, and Emericella nidulans). For the description of the growth rate (expressed as the increase in colony diameter per unit of time) as a function of temperature and NaCl concentration, a six-parameter model has been developed. The model combines either the Rosso-type or the Ratkowsky-type temperature dependence with the NaCl concentration dependence derived from the relationship between the growth rate and square root of (1 - water activity), as proposed by Gibson and coworkers (A. M. Gibson, J. Baranyi, J. I. Pitt, M. J. Eyles, and T. A. Roberts, Int. J. Food Microbiol. 23:419-431, 1994). The model will be of use to food microbiologists whose aim is to predict the likelihood of fungal spoilage.
This article was published in Appl Environ Microbiol and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords