alexa A multisensory integration model of human stance control.
Physicaltherapy & Rehabilitation

Physicaltherapy & Rehabilitation

International Journal of Physical Medicine & Rehabilitation

Author(s): van der Kooij H, Jacobs R, Koopman B, Grootenboer H

Abstract Share this page

Abstract A model is presented to study and quantify the contribution of all available sensory information to human standing based on optimal estimation theory. In the model, delayed sensory information is integrated in such a way that a best estimate of body orientation is obtained. The model approach agrees with the present theory of the goal of human balance control. The model is not based on purely inverted pendulum body dynamics, but rather on a three-link segment model of a standing human on a movable support base. In addition, the model is non-linear and explicitly addresses the problem of multisensory integration and neural time delays. A predictive element is included in the controller to compensate for time delays, necessary to maintain erect body orientation. Model results of sensory perturbations on total body sway closely resemble experimental results. Despite internal and external perturbations, the controller is able to stabilise the model of an inherently unstable standing human with neural time delays of 100 ms. It is concluded, that the model is capable of studying and quantifying multisensory integration in human stance control. We aim to apply the model in (1) the design and development of prostheses and orthoses and (2) the diagnosis of neurological balance disorders. This article was published in Biol Cybern and referenced in International Journal of Physical Medicine & Rehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords