alexa A neuronal isoform of the aplysia CPEB has prion-like properties.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Si K, Lindquist S, Kandel ER, Si K, Lindquist S, Kandel ER

Abstract Share this page

Abstract Prion proteins have the unusual capacity to fold into two functionally distinct conformations, one of which is self-perpetuating. When yeast prion proteins switch state, they produce heritable phenotypes. We report prion-like properties in a neuronal member of the CPEB family (cytoplasmic polyadenylation element binding protein), which regulates mRNA translation. Compared to other CPEB family members, the neuronal protein has an N-terminal extension that shares characteristics of yeast prion-determinants: a high glutamine content and predicted conformational flexibility. When fused to a reporter protein in yeast, this region confers upon it the epigenetic changes in state that characterize yeast prions. Full-length CPEB undergoes similar changes, but surprisingly it is the dominant, self-perpetuating prion-like form that has the greatest capacity to stimulate translation of CPEB-regulated mRNA. We hypothesize that conversion of CPEB to a prion-like state in stimulated synapses helps to maintain long-term synaptic changes associated with memory storage.
  • To read the full article Visit
  • Open Access
This article was published in Cell and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords