alexa A new approach to multibody model development: pedestrian lower extremity.
General Science

General Science

Journal of Forensic Biomechanics

Author(s): Kerrigan JR, Parent DP, Untaroiu C, Crandall JR, Deng B

Abstract Share this page

Abstract OBJECTIVE: The goal of this study was to develop a mathematical model of the 50th percentile male lower extremity capable of predicting injury risk and simulating the kinetic and kinematic response of the pedestrian lower extremity under vehicle impact loading. METHODS: The hip-to-foot multibody model was developed for the MADYMO software platform using exterior and interior geometry and inertial properties from a detailed finite element model (FEM) of the human lower extremity and stiffness and failure tolerance data from the literature. The leg and thigh models' structural and contact parameters were simultaneously optimized to validate model response in simulations replicating previous dynamic bending experiments. The aggregate model's full-scale kinematic response was verified by comparing 3-D local (knee bending angles) and global (linear accelerations and velocities) frame leg and thigh kinematics from vehicle impact simulations with data generated from seven vehicle-pedestrian (PMHS) impact experiments. RESULTS: By optimizing contact and structural response variables, the applied moment vs. deflection response of the leg and thigh showed excellent correlation with the experimental corridor averages in component-level bending simulations. The full-scale kinematic response of the 50th percentile male model showed good correlation with the PMHS response data in both the rate of valgus knee bending (approximately 3 degress/ms) and in the timing and magnitude of the peak thigh and leg accelerations (250 g and 400 g). Additionally, as a result of vehicle interaction, both the model and the experiments showed that the thigh and leg are initially accelerated upward (100 g) and downward (100 g), respectively, and then downward (60 g) and upward (100 g), respectively. The model also predicted a valgus knee injury and a tibia fracture similar to those seen in the PMHS. CONCLUSIONS: The use of a facet surface model of the lower extremity skin and simultaneous optimization of the model's structural response and contact parameters resulted in a model capable of accurately predicting the detailed kinematic response of the lower extremity under vehicle impact loading at 40 km/h. The model can be scaled to represent varying pedestrian anthropometries and can assess the risks associated with sustaining the most common pedestrian injuries. As a vehicle design tool, the model can be used to optimize front-end designs, or it can be used in combination with a detailed FEM to reduce the vast design space prior to FE simulations. Additionally, the model can be used as a tool to study pedestrian impact kinematics, real-world case reconstructions, or particular vehicle countermeasures. This article was published in Traffic Inj Prev and referenced in Journal of Forensic Biomechanics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords