alexa A new model of epidermal differentiation: Induction by mechanical stimulation
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): F E Grmar, A Bernd, J BereiterHahn, H Holzmann

Abstract Share this page

In vivo, epidermal cells are committed to terminal differentiation in which they undergo a series of morphological and biochemical changes. In vitro, keratinocytes are able to undergo some steps of this differentiation process only. In view of the fact that in vivo skin is continuously subjected to mechanical stress, we investigated the stimulation of differentiation of transformed keratinocytes by mechanical stimulation. The cells, grown in plastic culture dishes, were periodically treated with weights exerting a pressure of 0.015 Ncm−2. This stimulation lasted from 1 to 4 days. Then keratinocytes were examined using indirect immunofluorescence, 3H-thymidine and 14C-amino acid incorporation, SDS polyacrylamide gel electrophoresis, and Western blotting. Following pressure treatment, the previously monolayered keratinocytes locally grew up to several layers, the number of horny scales increased and, after 4 days, the pattern of cytokeratin was modified. The total amount of keratin increased, forming granular accumulations, while the proliferation rate of the cells decreased. Both the 67 kDa and 49.5 kDa keratin subunits increased in stimulated cells. Moreover, a weak keratin band of 44 kDa appeared that was not present in controls. The results demonstrate that cyclic pressure promotes differentiation of cultivated epidermal cells.

  • To read the full article Visit
  • Open Access
This article was published in Archives of Dermatological Research and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords