alexa A novel evolutionary drug scheduling model in cancer chemotherapy.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Liang Y, Leung KS, Mok TS

Abstract Share this page

Abstract In this paper, we introduce a modified optimal control model of drug scheduling in cancer chemotherapy and a new adaptive elitist-population-based genetic algorithm (AEGA) to solve it. Working closely with an oncologist, we first modify the existing model, because its equation for the cumulative drug toxicity is inconsistent with medical knowledge and clinical experience. To explore multiple efficient drug scheduling policies, we propose a novel variable representation--a cycle-wise representation, and modify the elitist genetic search operators in the AEGA. The simulation results obtained by the modified model match well with the clinical treatment experiences, and can provide multiple efficient solutions for oncologists to consider. Moreover, it has been shown that the evolutionary drug scheduling approach is simple, and capable of solving complex cancer chemotherapy problems by adapting multimodal versions of evolutionary algorithms.
This article was published in IEEE Trans Inf Technol Biomed and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords