alexa A novel mechanism in maggot debridement therapy: protease in excretion secretion promotes hepatocyte growth factor production.
Healthcare

Healthcare

Health Care : Current Reviews

Author(s): Honda K, Okamoto K, Mochida Y, Ishioka K, Oka M,

Abstract Share this page

Abstract Maggot debridement therapy (MDT) is effective for treating intractable wounds, but its precise molecular mechanism, including the association between MDT and growth factors, remains unknown. We administered MDT to nine patients (66.3 ± 11.8 yr, 5 male and 4 female) with intractable wounds of lower extremities because they did not respond to conventional therapies. Significant increases of hepatocyte growth factor (HGF) levels were observed in femoral vein blood during 48 h of MDT (P < 0.05), but no significant change was found for vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor-β1 (TGF-β1), or tumor necrosis factor-α (TNF-α). We conducted NIH-3T3 cell stimulation assay to evaluate the relation between HGF and protease activity in excretion/secretion (ES) derived from maggots. Compared with the control group, HGF was significantly higher in the 0.05 μg/ml ES group (P < 0.01). Furthermore, protease inhibitors suppressed the increase of HGF (P < 0.05). The HGF expression was increased in proportion to the ES protein concentration of 0.025 to 0.5 μg/ml. In fact, ES showed stronger capability of promoting HGF production and less cytotoxicity than chymotrypsin or bromelain. HGF is an important factor involved in cutaneous wound healing. Therefore, these results suggest that formation of healthy granulation tissue observed during MDT results from the increased HGF. Further investigation to identify molecules enhancing HGF expression by MDT will contribute greatly to drug target discovery for intractable wound healing therapy. This article was published in Am J Physiol Cell Physiol and referenced in Health Care : Current Reviews

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]csonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords