alexa A novel mutation in FGFR-3 disrupts a putative N-glycosylation site and results in hypochondroplasia.


Pediatrics & Therapeutics

Author(s): Winterpacht A, Hilbert K, Stelzer C, Schweikardt T, Decker H,

Abstract Share this page

Abstract Fibroblast growth factor receptor 3 (FGFR3) is a glycoprotein that belongs to the family of tyrosine kinase receptors. Specific mutations in the FGFR3 gene are associated with autosomal dominant human skeletal disorders such as hypochondroplasia, achondroplasia, and thanatophoric dysplasia. Hypochondroplasia (HCH), the mildest form of this group of short-limbed dwarfism disorders, results in approximately 60\% of cases from a mutation in the intracellular FGFR3-tyrosine kinase domain. The remaining cases may either be caused by defects in other FGFR gene regions or other yet unidentified genes. We describe a novel HCH mutation, the first found outside the common mutation hot spot of this condition. This point mutation, an N328I exchange in the extracellular Ig domain III of the receptor, seems to be unique as it affects a putative N-glycosylation site that is conserved between different FGFRs and species. The amino acid exchange itself most probably has no impact on the three-dimensional structure of the receptor domain, suggesting that the phenotype is the result of altered receptor glycosylation and its pathophysiological consequences.
This article was published in Physiol Genomics and referenced in Pediatrics & Therapeutics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version