alexa A novel sensing strategy for the detection of Staphylococcus aureus DNA by using a graphene oxide-based fluorescent probe.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Pang S, Gao Y, Li Y, Liu S, Su X

Abstract Share this page

Abstract A novel sensing strategy for sequence-specific recognition of Staphylococcus aureus (S. aureus) DNA was designed based on the DNA hybridization between dye-labeled single-stranded DNA (ssDNA) and the complementary target DNA. Graphene oxide (GO) can adsorb FITC-labeled probes and quench the fluorescence efficiently via Förster resonance energy transfer (FRET). However, the formation of double-stranded DNA (dsDNA) will alter the conformation of ssDNA and disturb the interaction between GO and ssDNA. Thus the dsDNA-GO mixture exhibits a stronger fluorescence emission than that of the ssDNA-GO mixture, and the relative fluorescence intensity ΔI/I0 (ΔI = I(a) - I(q)) is related to the concentration of ssDNA (S. aureus DNA). Here we illustrate a "post-mixing" strategy in which the fluorescent dye-labeled DNA was allowed to hybridize with S. aureus DNA prior to the addition of GO. In this experiment, the competition between ssDNA-GO adsorption and the dsDNA formation was avoided and the incubation time was shortened to 20 min. Under the optimum conditions, the relative fluorescence intensity ΔI/I0 was proportional to the concentration of S. aureus DNA in the range 0.0125-3.125 nmol L(-1), with a detection limit of 0.00625 nmol L(-1) and good sequence selectivity. This article was published in Analyst and referenced in Journal of Nanomedicine & Nanotechnology

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords