alexa A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin
Materials Science

Materials Science

Journal of Material Sciences & Engineering

Author(s): Hendriks FM, Brokken D, van Eemeren JT, Oomens CW, Baaijens FP

Abstract Share this page

BACKGROUND/AIMS: Human skin is a complex tissue consisting of several distinct layers. Each layer consists of various components with a specific structure. To gain a better insight into the overall mechanical behaviour of the skin, we wish to study the mechanical properties of the different layers. A numerical-experimental method was developed to characterize the non-linear mechanical behaviour of human dermis.

METHODS: Suction measurements at varying pressures were performed on the volar forearm skin of 10 subjects aged 19-24 years old. Deformation of dermis and fat during suction was measured using ultrasound. The experiment was simulated by a finite element model exhibiting extended Mooney material behaviour to account for the non-linear stress-strain relationship. An identification method is used to compare the experimental and numerical results to identify the parameters of the material model.

RESULTS: C10, dermis was found to be 9.4 +/- 3.6 kPa and C11, dermis to be 82 +/- 60 kPa. A first rough estimate of C10, fat was 0.02 kPa.

CONCLUSIONS: The resulting finite element model demonstrated its ability to describe the response of the skin to suction at various pressures. In the future, this method can be used to characterize the mechanical behaviour of different skin layers using various aperture sizes and to characterize the skin behaviour under various loading conditions.

  • To read the full article Visit
  • Subscription
This article was published in Skin Res Technol and referenced in Journal of Material Sciences & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 14th International Conference on Functional Energy Materials
    December 06-07, 2017 Atlanta, USA

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

agriaquaculture@omicsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

biochemjournals@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

chemistryjournals@omicsonline.com

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

clinicaljournals@omicsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

engineeringjournals@omicsonline.com

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

nutritionjournals@omicsonline.com

1-702-714-7001Extn: 9042

General Science

Andrea Jason

generalscience@omicsonline.com

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmolbio@omicsonline.com

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immunomicrobiol@omicsonline.com

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealthcare@omicsonline.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

medicaljournals@omicsonline.com

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuropsychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

pharmajournals@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords