alexa A photopolymerizable hydrogel for 3-D culture of human embryonic stem cell-derived cardiomyocytes and rat neonatal cardiac cells.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): ShapiraSchweitzer K, Habib M, Gepstein L, Seliktar D

Abstract Share this page

Abstract The purpose of this study was to assess the in vitro ability of two types of cardiomyocytes (cardiomyocytes derived from human embryonic stem cells (hESC-CM) and rat neonatal cardiomyocytes (rN-CM)) to survive and generate a functional cardiac syncytium in a three-dimensional in situ polymerizable hydrogel environment. Each cell type was cultured in a PEGylated fibrinogen (PF) hydrogel for up to two weeks while maturation and cardiac function were documented in terms of spontaneous contractile behavior and biomolecular organization. Quantitative contractile parameters including contraction amplitude and synchronization were measured by non-invasive image analysis. The rN-CM demonstrated the fastest maturation and the most significant spontaneous contraction. The hESC-CM maturation occurred between 10-14 days in culture, and exhibited less contraction amplitude and synchronization in comparison to the rN-CMs. The maturation of both cell types within the hydrogels was confirmed by cardiac-specific biomolecular markers, including alpha-sarcomeric actin, actinin, and connexin-43. Cellular responsiveness to isoproterenol, carbamylcholine and heptanol provided further evidence of the cardiac maturation in the 3-D PF hydrogel as well as identified a potential to use this system for in vitro drug screening. These findings indicate that the PF hydrogel biomaterial can be used as an in situ polymerizable biomaterial for stem cells and their cardiomyocyte derivatives. This article was published in J Mol Cell Cardiol and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords