alexa A polarization model overcoming the geometric restrictions of the laplace solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Gimsa J, Wachner D, Gimsa J, Wachner D

Abstract Share this page

Abstract We present a new model for a variety of electric polarization effects on oblate and prolate homogeneous and single-shell spheroids. For homogeneous spheroids the model is identical to the Laplace model. For single-shell spheres of cell-like geometry the calculated difference of the induced dipole moments is in the thousandths range. To solve Laplace's equation for nonspherical single-shell objects it is necessary to assume a confocal shell, which results in different cell membrane properties in the pole and equator regions, respectively. Our alternative model addresses this drawback. It assumes that the disturbance of the external field due to polarization may project into the medium to a characteristic distance, the influential radius. This parameter is related to the axis ratio of the spheroid over the depolarizing factors and allows us to determine the geometry for a finite resistor-capacitor model. From this model the potential at the spheroid's surface is obtained and, consequently, the local field inside a homogeneous spheroid is determined. In the single-shell case, this is the effective local field of an equivalent homogeneous spheroid. Finally, integration over the volume yields the frequency-dependent induced dipole moment. The resistor-capacitor approach allowed us to find simple equations for the critical and characteristic frequencies, force plateaus and peak heights of deformation, dielectrophoresis and electrorotation for homogeneous and single-shell spheroids, and a more generalized equation for the induced transmembrane potential of spheroidal cells.
This article was published in Biophys J and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords