alexa A procedure to simulate coronary artery bypass graft surgery.
General Science

General Science

Journal of Forensic Biomechanics

Author(s): Cacho F, Doblar M, Holzapfel GA

Abstract Share this page

Abstract In coronary artery bypass graft (CABG) surgery the involved tissues are overstretched, which may lead to intimal hyperplasia and graft failure. We propose a computational methodology for the simulation of traditional CABG surgery, and analyze the effect of two clinically relevant parameters on the artery and graft responses, i.e., incision length and insertion angle for a given graft diameter. The computational structural analyses are based on actual three-dimensional vessel dimensions of a human coronary artery and a human saphenous vein. The analyses consider the structure of the end-to-side anastomosis, the residual stresses and the typical anisotropic and nonlinear vessel behaviors. The coronary artery is modeled as a three-layer thick-walled tube. The finite element method is employed to predict deformation and stress distribution at various stages of CABG surgery. Small variations of the arterial incision have relatively big effects on the size of the arterial opening, which depends solely on the residual stress state. The incision length has a critical influence on the graft shape and the stress in the graft wall. Stresses at the heel region are higher than those at the toe region. The changes in the mechanical environment are severe along all transitions between the venous tissue and the host artery. Particular stress concentrations occur at the incision ends. The proposed computational methodology may be useful in designing a coronary anastomotic device for reducing surgical trauma. It may improve the quantitative knowledge of vessel diseases and serve as a tool for virtual planning of vascular surgery. This article was published in Med Biol Eng Comput and referenced in Journal of Forensic Biomechanics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords